Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages.

نویسندگان

  • Soumitra Mohanty
  • Prajna Jena
  • Ranjit Mehta
  • Rashmirekha Pati
  • Birendranath Banerjee
  • Satish Patil
  • Avinash Sonawane
چکیده

With the emergence of multidrug-resistant mycobacterial strains, better therapeutic strategies are required for the successful treatment of the infection. Although antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) are becoming one of the popular antibacterial agents, their antimycobacterial potential is not fully evaluated. In this study, we synthesized biogenic-silver nanoparticles using bacterial, fungal, and plant biomasses and analyzed their antibacterial activities in combination with AMPs against mycobacteria. Mycobacterium smegmatis was found to be more susceptible to AgNPs compared to M. marinum. We found that NK-2 showed enhanced killing effect with NP-1 and NP-2 biogenic nanoparticles at a 0.5-ppm concentration, whereas LLKKK-18 showed antibacterial activity only with NP-2 at 0.5-ppm dose against M. smegmatis. In case of M. marinum NK-2 did not show any additive activity with NP-1 and NP-2 and LLKKK-18 alone completely inhibited the bacterial growth. Both NP-1 and NP-2 also showed increased killing of M. smegmatis in combination with the antituberculosis drug rifampin. The sizes and shapes of the AgNPs were determined by transmission electron microscopy and dynamic light scattering. AgNPs showed no cytotoxic or DNA damage effects on macrophages at the mycobactericidal dose, whereas treatment with higher doses of AgNPs caused toxicity and micronuclei formation in cytokinesis blocked cells. Macrophages actively endocytosed fluorescein isothiocyanate-labeled AgNPs resulting in nitric oxide independent intracellular killing of M. smegmatis. Apoptosis and cell cycle studies showed that treatment with higher dose of AgNPs arrested macrophages at the G1-phase. In summary, our data suggest the combined effect of biogenic-AgNPs and antimicrobial peptides as a promising antimycobacterial template.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

Objective(s): For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The for...

متن کامل

Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles

   The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. This study was designed to examine the structural chemistry of silver nanoparticles (AgNPs) using both conventional heating and microwave irradiation methods.To o...

متن کامل

Facile Approach to Synthesize and Characterization of Silver Nanoparticles by Using Mulberry Leaves Extract in Aqueous Medium and its Application in Antimicrobial Activity

There is a huge demand of silver nanoparticles in the global market due to their special properties and applications in different fields such as nanomedicine , dentists , nanocatalysis, nanoelectronics, textile field, waste water treatment.The major cons of top down and Bottom up methods are the synthesis processes are highly costly, time consuming and many harmful chemicals are used. To reduce...

متن کامل

Biosynthesis, Characterization, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract

The biogenic synthesis of metal nanomaterial offers an environmentally benign alternative to the traditional chemical synthesis routes. In the present study, the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of silver nitrate (AgNO3) by using Nigella arvensis L. seed powder extract (NSPE) has been reported. AgNPs were characterized by UV–vis absorption spectroscopy with ...

متن کامل

Biosynthesis, Characterization, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Using Nigella arvensis Seed Extract

The biogenic synthesis of metal nanomaterial offers an environmentally benign alternative to the traditional chemical synthesis routes. In the present study, the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of silver nitrate (AgNO3) by using Nigella arvensis L. seed powder extract (NSPE) has been reported. AgNPs were characterized by UV–vis absorption spectroscopy with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 57 8  شماره 

صفحات  -

تاریخ انتشار 2013